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Introduction 

//1 

I The work for this research contract on atmospheric-pressure gas 

lasers had as its main objectives the generation of short laser pulses 

through mode locking and cavity dumping,  the study of the nonlinear 

amplification processes in a transversely excited atmospheric pres- 

sure laser, and development of computer programs to check the 

observed amplifier responses against models of the relaxation proces- 

ses of the CO? molecule in a laser discharge. 

During the progress of this work, it was realized that a simple 

yet reliable model of the discharge excitation of the laser medium was 

needed if quantitative predictions of laser performance were to be 

made without excessive computational effort and hence a certain loss 

in understanding.    With this in mind an analytic model was developed 

for the interaction between the electrons in a molecular laser discharge 

with the active molecules. 

One of the major bottlenecks in the generation of short laser pulses 

is the mode-locking process.    Shorter pulses in general are obtained 

through the use of saturable absorber mode locking as compared with 

forced mode locking.    The saturable absorber mode-locking process 

is less well understood than the forced mode-locking process.    In an 

effort to gain a better understanding of saturable absorber mode 

locking a new theory of mode locking was developed.    The first closed- 

form solution for a pulse produced by saturable absorber mode locking 

was obtained. 
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The ensuing sections of this report are addressed to one topic at 

a time and describe briefly the main thrust of the investigations. 

Details will be given in five appendices.   Appendices I, II,  and III 

contain excerpts from the Quarterly Progress Reports of the 

Research Laboratory of Electronics.    Appendices IV and V are 

preprints of a paper that has been accepted for publication and of a 

paper that is in preparation. 

Mode Locking and Cavity Dumping 

In order to produce high-intensity pulses to be used in nonlinear 

amplifier studies in a C02 TEA amplifier, a single pulse was selected 

from the laser oscillator by means of mode locking and cavity dumping. 

The cavity dumping scheme shuttled the mode-locked pulse out of the 

cavity at a time when the pulse had reached maximum intensity.    In 

this way the full energy of the pulse inside the cavity was obtained in 

a single emitted pulse. 

This scheme was made to work to produce single pulses 4 ns wide 

and with a peak power of the order of a few kilowatts.  Unfortunately 

the power was not as high as we originally hoped because the losses 

of the mode-locking crystal and the electro-optic switch used for the 

cavity dumping were high enough to depress the laser power greatly 

below the value that would have been obtained without the insertion of 

these two elements.    We then decided to select one or more pulses 

f     ' for the amplifier study from the mode-locked pulse train emerging 
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from the output mirror. In this scheme, which is described in greater 

detail in Appendix I, 500 kW pulses with a pulse duration of 2 ns were 

obtained. 

Measurement of Short-Term Recovery of C02 Population Inversion 

^3 

Sequences of pulses selected in the manner described in the pre- 

ceding section were used to determine the population inversion (gain) 

recovery via V-V relaxation in a C02 TEA amplifying system.    The 

amplifier was filled with a mixture of C02 N2 and helium at 200 Torr 

and the partial pressure of C02 was varied in the experiment from 

5 Torr to 40 Torr.    The individual input pulse lengths were 2 ns, 

the spacing between the pulses,   12 ns.     The first laser pulse was    - 

made to enter the amplifier -30 |JLS after the application of the dis- 

charge current pulse.     The recovery of the gain of the second pulse 

as a function of partial pressure of C02 was determined.    The total 

pressure in the amplifier was sufficient for appreciable equilibration 

of the rotational population distribution within the duration of one 

pulse.    Furthermore,  since the rotational relaxation is mainly a 

function of the total pressure, and not of the partial pressure of C02, 

variation of the partial pressure did not affect the recovery time of 

the rotational population distribution.    Therefore the increased 

recovery as a function of increasing pressure is attributable to 

V-V relaxation processes.    The level which has an appreciable popu- 

lation after equilibration of the vibrational temperatures and which 

MHO. 11 iliMiimrMaM—itii        
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can feed the upper laser level appreciably within 12 ns at the partial 

pressure used is the Oil level.   Hence this experiment ascertains the 

rate of relaxation of the Oil level and the degree of population recovery 

by means of this relaxation process.    Figure 1 shows the result of the 

experiment.    At the very low partial pressures when the relaxation 

mechanism is not operative within 12 ns the gain of the second pulse 

compared with that of the first one has been reduced by 20% because 

of the population depletion of the first pulse.    The experimentally 

observed recovery as a function of partial pressure is shown.    Two 

theoretical curves computed on the assumption that the recovery is due 

entirely to the feeding of the upper laser level by the Oil level popula- 

tion are shown as dashed curves.    The two curves were computed for two 

values of population inversion changes consistent with the gain changes 

caused by the first pulse.    This shows that the major portion of the 

recovery is explainable by this mechanism.    The fact that the experi- 

mentally observed recovery is larger than the one predicted on the 

basis of the Oil level relaxation is attributable to the more effective 

relaxation of the lower laser level with increasing partial pressure, an 

effect not taken into account in the theory which assumed that even at 

the low partial pressures the lower laser level relaxes completely 

within the 12-ns interval. 

Details of the experiment are given in Appendix II.    The theoretical 

computations are contained in the Master's thesis of Y.  ManichaikulJ1^ 

The conclusion drawn from the experiment is that energy storages 

available in vibrational combination modes can be utilized if the pulse 

DA 
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Fig.   1.    Theoretical plot of LSG^LSGj against CO- partial pressure. 
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to be amplified is lengthened.    The present experiment indicates the 

magnitude of the effect and the time scales at which such utilization 

occurs. 

Development of Computer Codes for Amplifier Studies 

A four-temperature model including rotational relaxation for the 

study of pulse amplification in a TEA amplifier has been developed by 

A. H.  M.  Ross as originally proposed.    The work eventually was not 

supported by this program but by a National Science Foundation grant. 

Yet Ross's results were used, for example, in the interpretation of 

the amplifier experiment discussed above.    Ross's program is out- 

lined in Appendix III and is available upon request. 

The funds freed by the fact that NSF support was available to Ross 

provided the basis for two other research projects not originally pro- 

posed.    These are described below. 

Electron Distribution and Lasing Efficiency.    Computer codes 

evaluating the electron distribution and the pumping of laser levels 

have been developed in several laboratories, notably at United Air- 

craft Corporation.    Whereas good quantitative results can be obtained 

from these programs, it is difficult to cull from them physical insight 

about the influence of various parameters, without carrying out costly 

computations.    With this in mind, we have developed a simplified 

model for the electron distribution and the pumping of the electron 

H  6 
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laser levels which is amenable   to closed-form solutions.  The details 

of this work have been published.    J   Here we give a brief summary of 

the salient features. 

By simplifying the energy dependence of the collision cross  sec- 

tions of the electrons, it was possible to obtain a closed-form solution 

for the electron distribution, a function of the degree of molecular 

excitation.    In this way the feedback could be ascertained of the changes 

in the molecular population inversion upon the electron distribution. 

Also the question could be asked to what extent the i-v characteristic 

of a preionized laser (E-beam laser) depends upon the lasing action. 

It was found that the i-v characteristic depends only weakly upon 

lasingi in fact when the elastic collision frequency of the electrons is 

assumed independent of electron energy, the i-v characteristic is 

entirely independent of whether lasing does or does not occur.    The 

energy extraction by induced emission is offset by a decrease of the 

energy transfer to the translational modes of the gas.    For other 

details we refer to the publication itself. 

Mode-Locking Theory 

A major bottleneck in the production of short laser pulses is the 

mode-locked oscillator.    Extensive work has been done on the theory 

of mode locking, but no simple analysis has been published on the 

theory of mode locking by a saturable absorber.    In an effort to develop 

a closed-form theory for saturable absorber mode locking, we arrived 

/M 
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at a greatly simplified theory of forced mode locking which enabled us 

to solve hitherto unsolved problems.   A paper has been submitted to 

the Journal of Quantum Electronics and revised upon request of the 

reviewers.    The revised version is attached as Appendix IV.    The 

r.ew problems that have been solved are (a) forced mode locking of an 

inhomogeneously broadened laser medium,   (b) forced mode locking by 

square-wave amplitude modulation, and (c) stability analysis of the 

forced mode-locked pulse train. 

A closed-form solution has been obtained for the mode-locked 

pulse of a homogeneously broadened laser mode locked by a saturable 

absorber of relaxation time that is short   compared with the pulse 

length.    Details are given in a preprint which forms Appendix V. 
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APPENDIX I 

Reprinted from 

Quarterly Progress Report No.   110,  July 15,   1973 

Research Laboratory of Electronics 
Massachusetts Institute of Technology 

Cambridge,  Massachusetts   02139 
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Fig.   VI-22. 

Photograph of experimental 
apparatus. 

r^j 

M5 
^f 

HIGH 
VOLTAGE f 
r 

-J^ 

-^h\^ 

He     N,     CO, 

=£- 

N,    CO, 

Ge L Gc P 
Zh 

GnA^ 
^r^ 

M2 

L—  7.5 IV, 30 ..s -^WUlr 
PULSED RF GENERATOR 

Al, A2, A3, A4 

ßl 

Dl 

D2 

GaAs 

Ge L 

Ge M 

Ge P 

LS 

Ml 

M2 

M3, M4, M6 

M5 

Tl, T2 

Apertures 

NaCI  beam splitter 

C-o Id-doped detector 

Copper-doped detector 

Electro-optic modulator 

Germanium lens,   1.5"  focal  length 

Germanium acousto-optic modulator 

Germanium plate at Brewster angle 

Laser-induced spark gap 

Gold-coated mirror, 99.6 % reflecting, 4 m radius of curvature 

Germanium mirror, 20 % transmitting 

Gold-coated flat minors,   totally reflectina 

Gold-coated mirror, 99.6 % reflecHng, 2 m radius  3f curvatu e 

3-electrode discharge tubes,   1 rr long 

Fig.  VI-23.    Diagram of experimental arrangement. 
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crystal,    This caused tin.- germanium crystal to heat up,  thereby changing its acoustic 

resonance frequencies.    We are now using pulsed RF power to minimize this problem. 

lixperimental Arrangement 

Figure Vl-22 is a phonograph v>f the new as TEA CO., laser pulse-producing systcMn, 

and Fig.   \rI-:,3 is a schematic diagram of the experimental arrangement.   With a dc volt- 

age of S kV across the GaAs electro-optic modulator a fraction of the energy from the 

beam can be switched out at the Brewster-angle germanium plate (GeP,  see Fig,   VI-23). 

This fraction of the beam was guided by two flat mirrors to a gold-coaled mirror with 

2-m radius of curvature,  which focuses the beam inside the 3-electrode laser amplifier. 

The tube is operated between 1U   Torr anil 400   Torr.     A  fraction  of  the    beam,   before 

going into the amplifier,  is reflected out from a beam splitter and detected by a copper- 

doped liquid-helium-cooled detector with a rise time of <1 ns.    The fraction of the beam 

that lias passi.'d through the amplifier is detected by a gold-doped liquid-nitrogen-cooled 

detector with a rise time of ~1 ns. 

Experiments 

a.    Genert-tion of Nanosecond TLA CO_ Laser Pulses 

The laser cavity has an optical length of approximately 1. 88 ni.    To achieve forced 

mode' lucking. KK driving power at 2. 5 ms with •! W peak power was supplied to the ger- 

manium acousto-optic modulator.   The 3-electrode discharge tube inside the easily is set 

to trigger at 2 ms after the RF power is on.    We have obtained mode-locked pulses <2 ns 

wide (FWHM)   with  a   peak  power  of  ~5ÜÜ kW,    Figure V'l-24   shows  a  typical  train  of 

mode-locked  pulses  delected  by  a  copper-doped   detector   and   displayed   on   a   Tek- 

tronix 7904 oscilloscope. 

Fig.   Vl-24. 

Typical mode-locked pulses from the laser 
oscillator (5 ns/div). 

The  switching out of individual puises is accomplished by using the laser-induced 

spark gap,   which is normally filled with prepunfied nitrogen at 100 psi.    The coaxial 

cable was charged up to 15 kV,    We  can  vary the  temporal triggering  of  this   gap   by 

QPR  No.   11C 120 
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APPENDIX II 

Reprinted from 

Quarterly Progress Report No,  111,  October 15,  1973 

Research Laboratory of Electronics 
Massachusetts Institute of Technology 

Cambridge,  Massachusetts   02139 
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;.    AMPLIFICATION OF  TWO HIGH-INTENSITY  NANOSECOND 

TEA  CO-   LASER   PULSES (AHN) 

National Science Foundation (Grant GK-37979X) 

U.S.   Army- Research Office - Durham (Contract DAHC04»72-0-0044) 

Y.   Manichaikul 

Experiment 

We have previously reported on the generation and amplification of high-intensity 

nanosecond pulses.     Two or three of those pulses were produced.     They wore  from 

the I'll*')  transition,   2 us wide (FWHM),  separated by \.l us.    When these pulses were 

focused into a three-electrode laser amplifier as shown in Kig.   VI-12,  a peak intensity 

of 2-3  MW/cm    was obtained.    A beam splitter was used so   that  the  intensity  of  the 

pulses could be monitored.    The input and output detectors wer.' as shown in Fig.   VI-12. 

In this  experiment  the detected input signals were delayed 100 us by using  60 ft  of 

S      UlOlt.FUT MIRROR 

R      l«)%, 
«APIU'i OF CIIRVAIURt 

FROM OSCILLATOR OF  HIGH-INTtNSITY ...   PULSE 

OENfRAriNG WTFM  DfSCRIRFn  PRtVIOUSLY.' 

Fig.   VI-12.    Experimental  arrangement  for amplification of 

high-intensity ns pulses.  (See Y.   Manichaikul.   ) 

RCi-8 cable.    The add mode of a Tektronix oscilloscope was used to display the signals 

for both input and output pulses on the same screen.     The two detectors were calibrated 

against each other by comparing the oscilloscope picture of the input and output pulses 

without discharge exciting the three-electrode  laser amplifier.     Figure VI-13a   shows 
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Fig.   VI-13.    Output and input of AHN experiment.   Total pressure: 
200 Torr.    Gas mixture:   CCyN-.'He =   X:4:100. 

Intensity of input pulse: 0.75 (MW/cm2)/div. Inten- 

sity of output pulse: 1.12 (MVV/cm ^/div. Time: 
50 ns/div.    (a)  Amplifier off.    (b)  Amplifier on. 

the oscilloscope display for this case. 

In order to probe the temporal evolution of the three-electrode laser amplifier,   we 

first fired the amplifier and,  after a chosen delay time,   the oscillator.    In general,   the 

oscillator was fired ~30 Ms after the onset of the discharge in the amplifier for two rea- 

sons:   first,   we wished to avoid the effects on our measurements of the shock waves 

generated by the  discharge.     Second,   we wished to be certain that   the   symmetric 

stretching   (SS)   and  bending  (B)  modes  of CO,   had  equilibrated with   each   other   at 
slightly above the kinetic temperature of the   gas.2 

Measurements on the amplification of high-intensity ns pulses were made at 200 Torr 

of C02:N2:He  mixtures.    The ratio of these mixtures was  CO  :N  tHe = X:4: 100, where 

C02 partial  pressure was varied from 3. 5 to 35 Torr partial pressure.    Small-signal 

gain of this three-electrode laser amplifier in each case was measured by a  cw CO 
laser. 

Results 

Figure Vl-13b  illustrates  the input and output pulses  when the amplifier is turned 
on.    Four such measurements  were made  and  their  average  was  taken  at  each  CO 

partial pressure studied.     We have found that the RG-8 cable   used  for the  time delay2 

introduces some distortion  in  the  input  signals.     This distortion can be accounted for 

if the first  (second)  pulses  of the  input and output pulses from the amplification  mea- 

surements are compared with the first (second) pulses of the input and output  pulses 
when the amplifier was evacuated. 
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(7) 

(61    X 

Fig.   Vl-H.    IwSG^/LSGj  vs partial C 

pressure. 

0„ 

Table VI-1.    Experimental results. 

No. pco2 
(Torr) 

SSG 

± 1 0% 

LSGj 

± 10% 

Ta 
vv 

CK) 

AN u 
Nu(0) 

1 3. 5 0. 50 0. 30 1180 0. 12 

2 6. 5 0.70 0. 36 1150 0. 11 

3 11.0 1.50 0.76 1155 0. 14 

4 20. 0 1.00« 0. 52 845 0. 11 

5 23.0 1. 50* 0.75 860 0. 13 

6 24. 0 2. 00* 0.96 890 0. 14 

7 27.0 2. 50* 1.15 935 0. 15 

S 35. 0 2. 00 0. 81 830 0. 10 

Notes:    *Not measured directly;  calculated from LSGj  and  the 
peak intensity of the pulse. 

I.    - I     . 
SSQ = Jil_—eHi js the small-signal gain across the tube 

1. 
in 

m Here the intensity is less than 1 W/c 

LSG  ,  large-signal gain of the first pulse. 

|w,   temperature of the asymmetric stretching mode cal- 
culated from SSG. 

-,   fractional depletion of the 00' 1 population  by   an 

vv 

AN 

N (0)     ns pulse 
u 

AN  ,   calculated from the large-signal gain  and the inten- 
U    sity of the pulse. 

N  (0),   obtained from SSG. 
u 
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Figure VI-14   shows LSG^LSGj   vs the partial pressure of CO,, studied.     We have 

LSG 4   outi       ini 
I.    . in i 

where i- 1,2, with 1 and 2 representing first and second pulses. LSG (LSG ) is 

the large-signal gain of the first (second) pulses. The following observations can be 

made from these measurements, (i) LSG^LSGj is less than unity. This is to be 

expected, since the first pulse had depleted a fraction of the population from the 00» 1 

level of C02. (ii) The ratio LSG^LSGj is approximately 0. 8 at CO., partial pressure 

of 3. 5 Torr and the ratio increases slowly to 0. 9 as CO., partial pressure increases ' 

to 20 Torr or higher, which is as expected, since the 00» 1 level of CO, was being 

repopulated by the higher O n^m levels at a rate3 that is directly proportional to the 
C02 partial pressure. 

Table VI-1 gives other experimental results of interest.    We found that the large- 

signal gain of our pulses is approximately one-half the small-signal gain,  and the frac- 
AN 

tional depletion of the 00° 1 level. 
Nu(0 

■,is between 0. 10  and 0. 15. 

A theoretical model for the amplification of high-intensity nanosecond pulses is being 

developed. We shall present the theory, and make a comparison of theory and experiment 
in a future report. 
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1.    CO, SHORT-PULSE AMPLIFICATION STUDIES 

National Science Foundation (Grant GK-37979X) 

A.  H.   M,   Ross 

Recent advances in high-pressure gas discharge technology have made possible the 

deposition of as much as .500 joules/liter in carbon dioxide   laser media.     Because  of 

the several vibration-rotation degrees of freedom of the CO»  molecule,   this energy is 

stored in a great many molecular states,   and therefore efficient extraction of it requires 

optical pulse lengths that  are large compared with the kinetic collision times governing 

the energy-exchange processes in the medium.   Operation of high-pressure devices  as 

oscillators yields as much as 50 joules/liter from  the  afterglow  of a   pulsed  discharge, 

and quasi cw operation has given  hundreds of joules/liter in  10-100 (j.s pulses.   Extrac- 

tion  in  ns   pulses  is   far less efficient.    In this report we summarize  theoretical results 

from a multitemperature kinetic: model formulated to describe ns   pulse amplification by 

devices operating at pressures above 1  atm.    Numerical results for 1-atm and   5-atm 

pulse amplifiers are presented. 
Amplification  of pulses comparable  to,   or faster  than,   kinetic   collision times 

requires consideration of the polarization of the molecules, and of inertial effects in the 

molecular  dipoles (for example,   see Hopf and Rhodes   ).   Theoretical models incorpo- 

rating  only  two   vibration   states   and   the   full   rotation   spectrum   will   be   adequate 

descriptions.    If  energy is to be extracted efficiently,   the pulse length  must be several 

collision times,   in which case the coherence effects can be neglected,   and the medium 

can be described by a  rate-equation model. 
In the rate-equation limit the growth of n plane wave in a transversely uniform 

medium with nonresonant loss a can be described by a first-order differential equation 

in distance 

1 K P 
-d + o-(w) N <Moo' i,,r | - — [IO'CJ i, d) 
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where the stimulated L-misaion cross section is 

T 

tr(w) 
Y, 

sp    "j1    (w-w   )    + v^ 
o o 

(2) 

withN,  the CO..  density,   gj the degeneracy of the Jth  rotational  slate 

gj = 2 J + ] 
(3) 

and [njn^.Jj is the fractional C02  population in the state of these quantum numbers 

(that is,   the diagonal element of the density matrix  for a single molecule).     The  spon- 

taneous  emission time written here is that for the entire band;  an individual  line  has 

a matrix element proportional to the rotational matrix  .■lenient 

JJ 
for a P(J) line (J1 = J-l) 

J + 1     for an R(J) line    r = ,1 + i (4) 

We shall neglect frequency pulling  effects,  although in high-gain systems they will  be 
important if the input pulse is detuned appreciably. 

We assu-. e that the molecular kinetics can be described adequately by rate equations 

in which  only  binary collisions   are   important.      Even  with  the   rate-equation model,   the 

-six degrees of freedom of the CO.,  molecule, in its  electronic  «round  state give rise to 

so many important vibration-rotation states that the problem would be intractable with- 

out further simplifying assumptions.    The fact that the molecule is reasonably harmonic 

in   its   low  vibrational   states,   and that the interaction  of vibration and rotation is weak 

allows   us  to  treat  the    relaxation  of  the   various   degrees  of   freedom   substantially 

independently.    We  also make  use of the observation of Osipov and  Stupochenko2 that 

relaxation of molecular vibration» from a nonequilibrium distribution takes place in two 

phases:    first,    a   rapid   relaxation   to  quasi   equilibrium    in   which   the   various  normal 

modes of the molecule acquire a  Hollzmann distribution of excitation,   which can corre- 

spond to a temperature, far different from the kinetic temperature of the gas and second. 

a  slow   relaxation   of   these   quasi-equilihrium   distributions    to   the   kinetic    tempera- 
tut'e. 

Since we are concerned with amplifiers in which the pumping takes place over a time 

scab, that is large compared with the kinetic collision times, it is reasonable to assume, 

that prior to the. arrival of the electromagnetic pulse the vibrational states are dis- 
tributed according to the. partial equilibrium distribution 

n.,  n 
[n1n2n3J= (l-s)(l-br (l-a) s  ^n.+l) b ' 

(5) 
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where  s,   b,   and a  are  Boltzmann factors for the  symmetric   stretch,   bending,   and 

asymmetric stretch modes  (v., v9, v,)  of the C'0„ molecule.    We have taken the state 

[n  n0n3J to include  all of the states  [n^n^,   of which  there are n2 + 1   (f n-presents 

an angular momentum around the symmetry  axis  of the  molecule,   and hence  can take 

on the values  -n. -n0 + 2,   -112 + 4, 

exp 
kBTs 

(6) 

h = exp 
kBTb 

exp 
kBTa 

(8) 

The rotation states also reflect a Boltzmann distribution 

n,n2n3,JJ = nln2n3 
,   hcB \ hH?   J(J+1)], 

kBTr 
(9) 

; where we assume that the rotational  constant  B  is independent of the vibrational state 

(C00 has cB = 11606 MHz   and 11698   MHz   in the upper and lower laser levels,   respec- 

tively).     Doppler broadening of the laser lines is less than 1% of the homogeneous line- 

width at 1 atm,   so the velocity distribution of the molecules will be neglected. 

Passage of an optical pulse will introduce deviations from these distributions.    In 

particular,   a  fast pulse  will  create  a   "hole"   in  the  state   [00' l.J']  (that  is,   it  will 

depress the population below that given by (5)),   and a "peak"   in   |l0o0, jj because of the 

stimulated emission process.    Judicious  approximations allow a description of the kin- 

etics   in  terms  of variables  giving the  average occupations  of  the   three  vibrational 

modes and the depths of the "holes"   in both vibration and rotation.    In particular,   we 

assume that the two laser states have the forms 

[00° 1 z     a + a v 
(10) 

-1 [io°oj = Z    S + ß :ii; 

and that the other states retain their previous occupation probability exclusive of nor 

malization 

n n.,   n 
[n  n n   I = Z .  s    (m+Db    a     , (t^n^) * laser state. (12) 
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The normalization condition requires 

r,-l Zv    - (l-a-p)(l-s)(l-b)" (1-a). ;i3) 

Defining the occupation fractions for the individual modes 

x    =   r    (mnql 
mn 

(14) 

yn -   r    [mnq I 
mq 

(15) 

Z      =   S   (mnqj, m nq 
(16) 

and with the assumptions (10),   (11),   and (12),  we find the following expressions. 

xq = (l-a-ß)(l-a)aq, q ^ 0    or 1 

xo = 1 - a - a + (a + p)a = (l-a-ß)(l-a) + p^ 

Xj  = (l-c-p)(l-a)a + a 

(17) 

yr = (l-a-p)(n+l)L (18) 

zm = (l-c-p)(l-s)sm, m^O     or 1 

Zo = 1 - s - ß + (c + p)s = (l-a-p)(I-s) + a (19) 

Zj = (l-c-p)(l-s)s + p. 

These distributions are illustrated in Fig,   VI-S. 

While this assumption of "holes" in single vibratlonal states is a convenient approx 

imation,   the corresponding ansatz for the rotational distribution is supported experi- 

mentally  by the  work  of  Cheo   and   Abrams.3    They have   found  that  the   rotational 

relaxation   may  be  J-independent  and all   rotational  levels  are   thermalized   in   one 

collision time,   so that the expression 

[00-1, J1] = |ocr'l | - 

with 

Zr    2 g     exp ' hcg 
.kBTr 

JMJ'+l) + ^ (20) 
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'■.■1 = "^'(^r (21) 

correctly parametrizes  solutions  of  the  model.     |   measures  the  depth  of  the   "hole" 

in  the   rotational  sublevel  depleted  by  the   radiation;   the  other  levels are populated 

s 
\ 

H{ _ 

I •~T  
q  - 0 

II r- -- — 
n       0 1 

\ 
v. 

ENERGY 

Fig.   VI-8.    Assumed distributions of CO_ normal vibrational 
mode excitations. 

in proportion  to a Boltzmann distribution scaled in amplitude  by   1-|   so that the  net 

vibratio ial-state  population  is  held constant as £   varies.     A  similar expression is 

assumed for the lower level: 

rr-1 llO-O.jJr [10'ON 7^/  2 Sj cxi hcB 
kBTr 

J(J+1. + n (22) 

with 

y-i _ ..    J hcB 

This   rotational  distribution is illustrated in i'"iR.   \I-9. 

(23) 
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Pig.   VI-9.    As sumed distributions of CCL rotational-state 
excitations. ^ * 

he Landau-Teller assumption that the dependence of energy exchange eross sec- 

tions 1S that of harmonic oscillator matrix elements can be used to determine the cro. 

sections   or the processes  to all orders from the measured rates.     We have  taken int 
account the following processes 

V-T in the v    mode': 

(n1n2n3) + M (n  , n,,-l, n.) + M + e, 

Intermode V-V between   v    and v ,; 
0 i\ 

(nj. n2 + L n3) + N2(V) ^(n^^, + N (v+], + 18 cm-l 

Intermode V-V between v   and 3v„! 

ab 
(nJn2)n3 + I) + M ^=r± (n. (n?+3.n,)  + M + 346 cm'1 
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Intramode V-V in v 

(nln2' n3 + 1) + (nln2' "3' ;?::=±(nin2n3) + (n'in:" n3+1) 

K-T: 

(J) + M ^=^(,j') + M. 

In addition,   the lower laser state has been assumed to have a V-V relaxation of inde- 

terminate nature- which has been modeled by a simple exponential decay.    Other   V-T 

processes could be included,   but the principal loss rate from both   v, and 1 -,  is by the 

v2 mode.     Also,   because of the close coupling of the v    and v., modes by the Fermi reso- 

nance (that is,   large cross sections for the conversion of one member of a Fermi reso- 

nant pair   into  the   other),   we have assumed that the   1^   and   v»   vibrational   temperatures 

are equal.    The proper variable for the description of the combined bath of states is 

Q = 2 S + B, 14) 

where S and B are the average occupancies of v    and v. 

m       m        v    1-s     f 

B = Z  ny    =Z-1  ^, 
n    ^ n        v    1 - b' 

A = !qxq = zv1 r^T + Q 

(25) 

(26) 

(27) 

For simplicity,  we have also assumed  t . = 2 e    so that 

s "  D   • (28) 

The derivation of the equations for A, N, Q, o, (-', %, r\ and the kinetic-rotational energy 

per particle is straightforward but tedious.   Neglecting the c + ß terms in (17)-(I9) com- 

pared to 1,   we find (UJ=üJ  ): 

at'        'im A(N+1)-(A+])N an'    B 

-R 
ab 1 + 

3B 
B + 2 

/k^T 
A(|+1)    _(A+1)(1)VWKB 

9) 
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S   = +3U..J !   i 01 ab. 
3B 1 

B+zJ A(f+l)3-(A+I,(f)3e"eab/kBT 

-■{try »■ (30) 

9 t1      %a 

9c 

A(N+1)-(A+1)N e    "n    B 

8T' = -2Raa0 " Ki 

or 

(32) 

dß 
9-=-2Ubbp+K. 

(33) 

9e 

ST] 

^7= -Yr.n+ d-n) lyjio'oj 

(|^c^n)^(kBT)^c,ebUb/M 

+ 4J e    R c  an   an 
-e    /n_,T 

A(N+l)-{A+l)Ne    an    B 

^ceabKabi1+irr2 A(f+l)   -(A+l)(|) 
3 ^ab/V 

'34) 

(35) 

(36) 

vvhci-t; 

c   an     Yn   na     ^c*n an 

«a. = ^ ♦M«'- 

(37) 

(38) 

% -1 ViM)r 

aa      ^c   aa 

B - B(Tb=T) 

(39) 

(40) 

(41) 
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APPENDIX IV 

Preprint:   to appear in the Journal of Quantum Electroni cs 

H. A. Haus, "A Theory of Forced Mode Locking" 
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A THEORY OF FORCED MODE LOCKING* 

by H. A. Haus** 

Abstract: 

A theory of forced mode locking is set up on the basis of 

an expansion of the electromagnetic fields in the optical cavity 

in terms of the cavity modes. Mode locking is viewed as injection 

locking of the cavity modes via generation of frequency sidebands 

by the mode locking element. The approach leads naturally to 

simplifying assumptions that are legitimate in most practical 

cases.  In the case of a homogeneously broadened laser medium, a 

simple differential equation is obtained for the mode locked pulse 

train for an arbitrary periodic mode locking modulation. The 

analogy of the equation with well,known solved problems of quan- 

tum mechanics is used to determine the nature of the solutions. 

For any given modulation, usually more than one mode locked solu- 

tion is found.  In the case of sinusoidal modulation, one of the 

solutions reduces to that previously derived by Siegmann and 

Kuizenga. The higher order solutions are shown to be unstable. 

The case of mode locking of an inhomogeneously broadened laser 

medium is solved. 

* Work supported by Joint Services Electronics Program (Contract 
DAAB07-71-C-0300). US Army Research Office - Durham (Contract 
DAHC04-72-C-0044). 

** Electrical Engineering Department and Research Laboratory of 
Electronics, Massachusetts Institute of Technology, Cambridge, 
Mass.  02139. 
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I 

Introduction 

The theoretical investigations of mode locking[see Ref. 1 

for a large list of references! may be roughly divided into two 

groups,  (a) those which treat the mode locking process in the 

time domain, e.g. the paper by Kuizenga and Siegman[2], and 

(b) those which treat the phenomenon in the frequency domain 

(notably the paper by McDuff and Harris[3]).  In this paper we 

present a useful extension of the mode locking analysis in the 

frequency domain. When setting up the analysis of saturable 

absorber mode locking by a somewhat novel approach we soon dis- 

covered that this approach lent itself very well to a better * 

understanding of the forced mode locking phenomenon and permitted 

the solution of previously unsolved problems of mode locking 

theory. 

This paper is devoted to forced mode locking.  In particular 

the following issues are addressed:  1, Mode locking of a homo- 

geneously broadened laser by sinusoidal amplitude modulation. 

Well known results are obtained, but this part of the paper is 

intended mainly to show the correspondence with previous work. 

2. Mode locking by sinusoidal amplitude modulation of an 

inhoraogeneously broadened laser.  3. Modulation, other than 

sinusoidal, of a homogeneously broadened laser,  4.  Stability 

of the mode locked pulses of a homogeneously broadened laser. 
« 

The presentation of a theory of mode locking from a dif- 

ferent point of view needs some justification in view of the 

HMUMMHüMM^BM* ***—1^...„ .. , .......... —-....uw—.^^a,,,^, ■■i, |||||-|*Ma 
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large literature on the subject.  It is believed that the approach 

presented here offers the following advantages: 

(a) The theory of coupled oscillators is a well known one 

and offers insights which are not as easily obtained using the 

approach of pulse propagation through nonlinear media. 

(b) The theory of injection locking has been recently dis- 

cussed very lucidly[4]. The analysis of the stability of locked 

oscillators can be transferred almost unchanged to the treatment 

of the stability of mode lockad pulse trains. 

(c) Simplifying assumptions concerning the character of the 

laser medium are suggested by the new approach which lead to very 

simple differential equations. The very simplicity of these dif- 

ferential equations then allows the treatment of problems not 

hitherto attempted. The present paper illustrates two such ap- 

plications: mode locking of an inhomogeneously broadened laser 

and stability analysis of the mode locked pulse train. 

..^ 
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I. Mode Locking as Injection Locking 

Injection locking of a cavity with a single mode containing 

a negative conductance may be analyzed with the aid of the equiv- 

alent circuit of Fig. 1. Here the admittance YL(|v|)  represents 

the active admittance of the gain element which is in general 

complex and a function of the magnitude of the complex voltage 

V, and Y- is the cavity admittance, a function of w.  If a 

current source !_ of frequency u is applied across the circuit 

as indicated, then the equation for this injection locked oscillator 

is given by 

Is «= [YC(ü)) + YL(w, |V|)] V (1.1) 

Equation (1.1) can be adapted to the case of a mode locked 

optical cavity involving the interaction among many axial modes. 

The identification of equivalent circuit elements of each reso- 

ance circuit (representing one axial laser mode) with laser and 

optical cavity parameters is carried out in Appendix I. 

The electric field in the cavity is expanded in the set of 

axial modes of the empty cavity, with mode pattern e. (r); the 

expansion coefficients become the voltages V.  of the different 

resonance circuits. One assumes at the outset that mode locking 

is successful and that all modes oscillate near their respective 

resonance frequencies. The frequency separation of the oscilla- 

tions is dictated by the injection signals which are by definition 

separated by wM,  the frequency of the mode locking element. 

M^^M^MM MBM^iH 
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Whether or not the solutions thus found are physically acceptable, 

i.e. stable, and the starting assumption of successful mode 

locking is indeed justified, must be left for a stability analysis 

which is carried out at the end of the paper. 

These assumptions imply that the electric field in the cavity 

can be expanded as follows: 

E(r, t) = e 0 E Vk e  
M ek(r) + c.c. (1.2) 

' where the k-th mode has the frequency 

wk = k u)M + u)0. (1.3) 

ju t 
The fast time dependence exp "'  0      has been explicity extracted 

where u  is to be identified with the frequency of the central 

mode  (k = 0),  the mode nearest to the peak of the laser gain 

profile (peak of the negative conductance Re YT) . 
Li 

Each complex amplitude V.  obeys a set of equations that 

can be summarized in a parallel equivalent circuit. The equiva- 

lent circuits describing different modes are coupled by the side- 

band generation of the mode locking element, i.e. the driving 

current for the k-th cavity mode,  Icw» contains contributions 

of vj(i ?* k) . We shall disregard couplings as caused by other 

effects. Thus, in particular, we shall assume that the gain of 

the laser medium (represented by Y ) is time independent and 

• 

^,:^u.^.JL..^,., „.; ,. .,;i;^ 
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therefore no sidebands are produced on frequency components 

amplified by the laser medium.  This in turn implies that the 

population relaxation time T,  is long compared with the cavity 

transit time so that the laser medium, while affected.by the 

time average optical power in the cavity, does not respond to 

instantaneous power fluctuations.  (This assumption was also made 

in Ref. 2.)  Generalizing (1.1) to the k-th cavity mode with 

aiqlitude V.  one has: 

^Ck^ + W1 Vk= ^k (1.4) 

Consider first the dependence of Y-. (u. )  upon u. .  The 

k-th cavity mode has a quality factor Q  (assumed to be the 

same for all modes) and a resonance frequency 

wko = k Aw + Uo (1.5) 

where Aw is the separation between the resonances of the 

(empty-axial) cavity modes.  Since the frequency of excitation 

is given by (1.3), one has 

yck = Gc 1 + kj 2Q 
wM - Ato 

u. 
(1.6) 

Next, consider !_,. of (1.4).  If the cavity is mode locked 

by the time dependent loss of a mode locking element, then 

mamm ■ <■■»!   I 
>*****>m 
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lSk m(t) Z V. e 
1 Ä 

JAwMtl M 
(1.7) 

k-th Fourier component 

where m(t)  has the time dependence of the loss modulation (with 

period 2Tr/uM)  and its magnitude is a measure of the "loading" 

of the cavity by the mode locking element.  (See Appendix I for 

details.) 

In (1.7) all modes I    affect the mode k equally  (m(t) 

is k and A independent) an assumption justified if the mode 

locking element is near one of the mirrors. Other positions of 

the mode locking element must be handled differently as shown in 

Section V.  The expression (1.7) may also be written, 

^k» G„ Z  M(k ~ *V (1.8) 

where M(k ' l)     is the  (k - £)-th Fourier component in the 

Fourier decomposition of m(t); 

m(t) = L M - e 
k 

(k)  3k wMt M 
(1.9) 

Combining (1.4), (1.6), and (1.7) we obtain 

1 + k j 2Q 
wM - Aw 

w. 
vk+ W vk = 

Gc [m(t) Z V. e  M 1 
k-th component 

(1.10) 

■ - --•   '■■- •-   mi  fiil.ML-J'— ——^■^-^-"-irnil-i r - i  ■ 
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Finally, consider the admittance of the laser medium (for 

details, see Appendix I). The laser gain is frequency dependent, 

and a Lorentzian line shape will be assumed. The admittance may 

be normalized to G- so that 
%0 

w ■e Gc 
g 

1 + j 
"k " % 

WL 

(1.11) 

where ü)L is the laser medium linewidth, and g is the magnitude 

of the negative conductance at line center normalized to G 

We have assumod that the center frequency of the laser line 

coincides with one of the cavity mode oscillations.  If the mode 

spectrum is dense as it must be to get good mode locking, this is 

not a serious restriction. 

We shall now make the most important assumption of this study, 

which, in fact, is the assumption crucial for obtainment of the 

simple equations of this treatise. We assume that (1.11) can be 

expanded in Wk - a^/u^ and only terms up to second order are 

retained 

W * -  GCg i - f !JS : "Q ]2 _ j "k - % 
(1.12) 

This assumption implies that the pulse widths predicted by the 

ensuing analysis must be long compared with  1/^.  This assumption 

is usually justified in practice. 

g:=^"^'^^,MM"^^-——  -  - -- -1..--—■■^■^■■^a^-^-.. ■■ i I'litrA- 



The  conductance    g    is power dependent.     If one normalizes 

the  field pattern    e,     appropriately,   the power    P    on the  travel- 

ling waves of the   (standing wave)   modes propagating  in one  axial 

direction  can be set equal to 

I   \\\2 

k      K 
and    g = 

1 + ^ 

(1.13) 

for a homogeneously broadened medium;  PL is the saturation power 

of the laser medium in general a function of wk.  If the pulse 

spectrum is narrow, as assumed, the to-dependence can be disregarded. 

(1.12) is correct strictly speaking only if all modes act on the 

laser medium in an identical way, i.e. if the medium is concentrated 

near one of the mirrors. The phenomenon of "spatial hoi2  burning" 

is thus occluded. Assumption (1.12) may not be too restrictive 

even for a laser medium occupying a larger portion of the cavity 

length. 

Suppose at first that 

in(t) = 2M[1 - cos ü)M t] (1.14) 

the modulation is purely sinusoidal.     Then 

hk* GCM[Vk - 1 " 2 Vk + Vk +  i]- (1.15) 

Adhering  to this example,   and  introducing   (1.15),   (1.3),    (1.5)   and 

(1.12)   into   (1.10)  we obtain  the  second order difference  equation: 

MMMH u-1^—.- ■  
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1 - g 1 - + jiJ!ü U^-^   +g 
"L U M w. 

MlVk-l  -2Vk+ Vk+   ll- (1.16) 

mmmtmmamimttmmmm^mmmmmmmm^mmmimi^t^m^^. JL. 
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II.  Solution of Sinusoidal Mode Locking of 

Homogeneously Broadened Laser 

We make a further approximation so as to enable us to find 

simple solutions to the difference equation (1.16).  if many 

modes are to be locked, and if the variation of the gain over 

a frequency range corresponding to the mode spacing is small, 

then the difference equation can be replaced by a second order 

differential equation. One has 

Vk + 1 - 
2Vk + Vk - ! U) M 

d2V 

dw2 

where Vk is now replaced by a continuous function of the variable 

«,  the frequency deviation from u)0,  and ^    is the frequency 

separation of the spectral lines.  The modes are identified by 

the continous variable u = lim kV, where k is the mode 
k*« 

number, which assumes     u -»-O 
M 

both positive and negative values.  One obtains for (1.16)[5]: 

V = Mu 2 d^V 

dw2 
M (2.1) 

where 6 is a measure of cavity "detuning", proportional to the 

difference between the modulation frequency and cavity resonance 

frequency spacing: 

~     2Q -il 
u, M w. (2.2) 

warn K*m MMMMMMMMi — -   -J—• ■■    ■ 
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Eq. (2.1) is particularly simple, if we require that 

« + g = 0. (2.3) 

This implies that 

1   Vo w - Au = - — g   
.M        2Q   UT 

(2.4) 

! 

; i 

The modulation frequency deviates from the cavity frequency by 

an amount proportional to the laser medium dispersion.  In fact, 

(2.4) means that the modulation frequency is adjusted to equal the 

cavity mode frequency separation as modified by the laser medium. 

Hence (2.4) may be viewed as excitation by a modulation tuned 

to the actual mode separation, i.e. resonant modulation. With 

(2.3) satisfied, (2.1) has a pure real coefficient on the right 

hand side.  The resulting equation is identical with the harmonic 

oscillator equation of quantum mechanics, where V plays the 

role of the wave function and w the role of the spacial vari- 

able. 

w 1 - g  1 - .JJL. 
w. 

V = M u* n 
d2V 

du2 
(2.5) 

We can now bring to bear the entire formalism of the quantum 

mechanical harmonic oscillator on the problem of loss modulation 

in a homogeneously broadened medium.  The solutions of (2.5) are 

I^MMM-BM 
-"■•-— 
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the well known  Hermite gaussians(6] 

-'■Mih-iR (2.6) 

where 

"■'■ß /WL WM ' 
(2.7) 

The role of the energy eigenvalues E  of the harmonic oscillator 

is played by the parameter g - 1 in (2,5). We find for the 

quantization of this parameter 

n g - 1 = 
2 /Mg wM (n + 1/2) 

(2.8) 

Equation (2.6) defines "supermodes" or "mode locking modes" 

of the mode locked oscillator. The higher the order n of the 

"supermode", the more structure in the frequency spectrum. Since 

the Fourier transform of the spectrum (2.6) leads to the same 

time dependence, we find that mode locked solutions may exist of 

higher and higher temporal structure exhibiting more and more 

pulses.  The lowest order supermode was obtained by Siegman and 

Kuizenga[2] and the higher order supermodes by Haken and 

Pauthier[71 and others[8,91. We si all show in Section VI that 

all higher order supermodes  (n > 0)  cannot be excited in the 

.^....^..-^^-^m»-^...»^-,,-..>.,■. ,.,,, ,    " -' ..--'■— —' - ■ *m»i$jg$ 



^t^ 

steady state because they are unstable. Equation (2.8) determines 

the power in the mode locked cavity.  Indeed by solving for g 

from (2.8) and then, using the dependence of g upon power P, 

(1.13), we find the following relationship for P: 

PL  1 + y + /2y + y2 
-!2 i (2.9) 

«. '* 
where y = - (2n + 1)2 M [— 

2      K. 

In the limit of a small modulation coefficient    M,   (2.9)   becomes 

^-=g    - 1 - 2g    /H ^5     (n+  1/2) (2.10) _, o o 
PL WL . 

Let us now return to an interpretation of the present 

solution in terms of the physical model used as a starting point 

of the  investigation,  the injection  locking model.    We must re- 

member that the differential equation was used as a mathematical 

approximation to the difference equation,   and that the solution 

obtained must be interpreted as an approximate solution of the 

difference equation  if the  replacement is made:     V(w)   ■♦ V^    and 

the solution   (2.6)   is assigned values only at discrete  frequencies 

wk.    Mode locking has  led to simultaneous oscillation of many modes 

in a homogeneously broadened system,   even  though the unmodulated 

"-—"^j~—^-M—^  -   ■■'- ■- ■■    ■ -■ ^___^ ^ 
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system would have oscillated only in a single mode. The simul- 

taneous oscillation in many modes is allowed because of injection 

locking. The injection currents are 

uSk GCM \ - 1 - 2 Vk + Vk + 1 

Figure 2  shows  a plot of the real part of the two sides of   (1.16) 

vs    w.      (the  imaginary part vanishes because of assumed resonant 

modulation),   showing explicitly the  discrepancies    Re[YcUk)   + 

Y   (wjl     which are balanced by the modulation-produced  "source" 
L    k 

current normalized to the oscillation voltage,     ^k^k* 

The results obtained thus far are well known.    One can extend 

our expressions to cover reactive   (phase)   rather than loss   (ampli- 

tude)  modulation by replacing    M    by an imaginary quantity,   again 

arriving at results derived previously.     The mathematical  steps 

necessary  for such modifications are  interesting,  but are not 

presented here because no new results  are obtained[10].     Instead, 

we shall concentrate here on problems whose solutions were not 

obtained previously. 

; I 
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III.  Inhomogeneously Broadened Medium 

If the medium is inhomogeneously broadened, then the power 

in any particular cavity mode determines the pulldown of the gain 

line at that particular cavity frequency (provided, of course, 

that the separation of the cavity modes is large compared with 

the homogeneous linewidth of the medium). The adaptation of 

(2,1) to the case of an inhomogeneously broadened medium is ac- 

complished by changing the character of the dependence of the 

negative conductance g upon intensity.  To first order, the 

reactive contribution is unaffected by saturation. The equation 

is: 

f7^ 
w 

Ü), 

(6 + go) „  M  2 d2V 
M (3.1) 

dw2 

where PL is a conveniently defined saturation intensity. Eq. 

(3.1) is a nonlinear differential equation for the voltage V. 

It is a difficult equation to solve; yet it is possible to gain 

considerable insxght into the nature of its solutions by giving 

it a physical interpretation. Let us separate the complex voltage 

amplitude into an amplitude and a phase factor 

V = A e j* (3.2) 

mam 



Taking the second derivative of (3.2) one obtains 

^TT 

d2V ^ = Ä e^ + 2ji Ä e^ +  ji* A e^*  - **  A e^ 
dw2 (3.3) 

Introducing   (3.2)   and   (3.3)   into  (3.1)   one has 
.2 

•• • 
M fc)M

2    (A  -   (J>2   A)   = • n 
i - w 

(0 M 

1   + 
>    A (3.4) 

•. •   » 
M uM

2    (A(j)   +  2A  (j))   =  -^.   (6   +  g   )    A 
(üT 

0 
(3.5) 

Here we have written  (*)  for d/dw in order to emphasize 

the analogy with the equations of motion of a particle in polar 

coordinates; the frequency variable plays the role of "time", the 

amplitude A is analogous to "radius".  The force field is 

"radius" and "time" dependent.  If one assumes that the driving 

frequency is matched to the frequency separation of the cavity 

modes as modified by the medium, then 6 + g =0 and the force 

field becomes a central one.  In this case, one may define a 

potential function, the derivative of which gives the force.  The 

potential function plotted against "radius" A as a function of 

"time" u is shown in Figure 3. The potential hill travels as 

a function of time towards the origin and then the origin becomes 

'taj"l-:*'-—-"■  - ■"  ..»-^-.■■^»-.■■O.!-..-...»- 
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a hill in its own right.  If one looks for a mode locked "super- 

ttode", one looks for the motion of a particle that starts with 

zero velocity at a time t = 0  (zero slope at center frequency), 

and than approaches the origin  (A = 0)  where it comes to a full 

stop. 

Consider first the case in the absence of modulation.  In 

the particle motion analog, this corresponds to a massless parti- 

cle. The particle "looks" for a position in which it is exposed 

to zero force field. The particle stays at the top of the hill 

starting infinitesimally to the left and then searches for the 

position in which the force is infinitesimally small yet directed 

from right to left. When the potential hill has made it to the 

origin, the particle has followed it there and then stays there 

forever. This case can be solved very simply analytically by 

setting the righthand side of equation (3.4) = 0. 

Consider next the case when there is modulation, at first 

the case of very small mass (modulation) . Near t = 0, when 

the force field is strong, the particle seeks out positions in 

the potential field at which it is exposed to a small force to 

the left. This means that the particle starts to the left of the 

hill at t = 0r  i.e. at a smaller radius than the massless par- 

ticle.  In the language of mode locking, this corresponds to a 

power of the mode near line center that is smaller than the power 

in the absence of mode locking. Near the origin, the particle 

has acquired a finite velocity and kinetic energy.  In order to 

come to a full stop at the origin, it has to expend the kinetic 

\ 
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energy by climbing up a hill. This means that, before the particle 

comes to full rest, the origin must have already risen above its 

surroundings.  Translated into the language of the mode locked 

"mode" this means that the frequency bandwidth of the mode is 

wider than in the absence of modulation (in the language of the 

equivalent particle the origin of the radial coordinate develops 

into a hill before the massless particle has reached the origin). 

The model is useful also for determining what happens when 

the strength of mode locking is increased excessively. This 

corresponds to a very massive particle. The potential, as defined, 

does not involve the mode locking amplitude M and hence, in the 

equivalent language of the particle, the initial hill becomes 

smaller, the heavier the particle. A supermode, symmetric at 

line center, corresponds to an initial condition for the analog 

particle starting at rest to the left of the potential hill. A 

particle which starts initially at rest slightly to the left of 

the potential hill may be too massive to make it near the origin 

before the potential distribution has changed beyond recall, 

preventing the particle from acquiring sufficient kinetic energy. 

The particle never makes it to the origin. No solution exists 

for excessively high values of M. 

There are also higher order solutions, if the modulation is 

not too strong. One may start the particle on the down slope of 

the hill. (Note the peak intensity at center frequency for this 

mode is less than for the lowest order supermode.) The particle 

may go through the origin and climb up the hill on the other side. 

MMMM——MMtMiffca ■inn IIBI—üa^Biwaiiii  - ■ - Üül MM ' 
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After oscillating back and forth, the particle can be brought to 

rest at the origin.  Such solutions exist only for particles of 

finite mass (i.e. finite modulation). 

Equation (3.4) has two adjustable parameters, go - 1, 

the excess small signal gain at line center  (w = 0)  and the 
/ M  M 

normalized modulation parameter   TT TT '     For a ran9e of these 
N 9o L 

two parameters, solutions for the particle motion were obtained. 

Figure 4 shows plots of A/ZFT vs normalized frequency w/(oM#  for 
fir "M various choices of the parameters  /-—• -—  cind g - 1. Figure 

\ go L 
5 shows the range in the  (go - 1) , 

IJI _51  plane over which mode locked solutions are obtained. 

Figure 6 shows the decrease of the oscillation amplitude at line 

center A(0)//P7,  as a function of normalized modulation, for 

different excess small signal gains. 
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IV. General Time Dependent Loss Modulation 

The generalization to a general, time dependent, loss 

modulation calls for re-examination of the "injection current" 

expression (1.7) .  This expression suggests that an analysis of the 

mode locking problem in the time domain may lead to simplifications 

Indeed, if one defines 

is(t) = E Isk e 
jkuMt 

(4.1) 

one finds 

Is(t) = - Gc m(t) v(t) (4.2) 

where v(t) = Z  v'e 
^wMt 

is the time dependent amplitude of 

the electric field near one of the mirrors.  Equation (4.2) states 

simply that the time dependent source current is the product of 

the modulated time dependent conductance G^ m(t)  and the field 

amplitude. 

All of this is straight forward and would not profit us 

very much if one could not transform the left hand side of (1.4) 

into the time domain and obtain a simple result.  In general, this 

is not possible.  However, with the approximations already made 

for Y
c(wk)  and Y

L(wk)  we may carry out the transformation 

and obtain a very simple result. Using the same approximations 

that led to (1.6), one obtains in the time domain: 

mm ^MMMMMMiiWiMt .!..-,- -i ...■...;. ...o .v.,...,,... -.. ^.^L^:.;^ ^-^.LA .„.,jj- ^.f;....j,^,^ .„j ^, 
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1 - g 1 + 
b). dt2J 

+ (g + 6) 
dt 

v(t) = m(t)v(t) (4.3) 

In the case of "resonant" excitation,  g + 6 = 0,  one obtains 

a differential equation in time for v(t)  with a simple quantum 

mechanical analog,  A particle with the mass 2m/h2 = uT
2/g 

Li 

moves in the potential well m(t)  where the role of the spatial 

variable x of quantum mechanics is now played by the time. The 

sinusoidal modulation problem of the homogeneously broadened laser 

could have been solved in the time domain, with 1 - cos to-.t-»' ^(u-.t) 

and the hermite gaussian solutions would have been obtained, 

another way of observing the invariance of hermite gaussians with 

regard to Fourier transformation. Note, however, that a solution 

of the inhomogeneously broadened laser mode locking problem would 

have been diffic't in the time domain. 

Solutions   M.3) can be obtained once one assumes special 

forms of the modulation function.  Consider for example a very 

deep modulation of the mode locking crystal which shuts off trans- 

mission entirely outside an interval of length T. This is shown 

in Figure 7. Equation (4.3) for the square potential well is the 

quantum mechanical problem of an electron in a perfectly reflecting 

box.  The eigenfunctions and eigenvalues of this problem are well 

known and are 

V(t) = cos ~ t (4.4) 
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in the time domain.  The eigenvalues are 

(4.5) 

In the time domain the mode locked pulse is entirely confined to 

the time period of length T. 

If the square wave modulation is modified to one of lesser 

depth, one has the problem of an electron in an open square well 

with well known eigenfunctions[6]. 

One may think of many other modulation forms for all of which 

it is easy to arrive at qualitative conclusions as to the shape 

of the mode locking pulse and the possibility of mode locking. 

The viewing of the mode locking problem in the time domain 

affords other insights.  Consider for example the question as to 

what approximations were made when the discrete spectrum of the 

cavity oscillations was replaced by a continuum and the modulation 

of loss, which was sinusoidal, was replaced by the operator d2/da)2. 

In the time domain, this operator is replaced by the function 

~ 2" t . xf  one considers the periodic problem, one has to make 

two modifications:  (a) one must return to the full time dependence 

.of the modulation and replace, in the time domain, the parabola by 

the cosine function.  (b) One must look for solutions of the time 

dependent problem which are periodic. 

Clearly the introduction of a periodic modulation function 

in lieu of the parabolic one, introduces a periodic well in time 

.iailM.»^^-—.-.^—i—j ■ ^. .  . u^-~~*~~*i^a~i—^-~....   
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space. The problem is now a quantum mechanical problem in a 

periodic potential.  If the modulation is strong enough so that 

the eigenvalues lie near the bottom of the well, one obtains a 

set of solutions in each of the well bottoms, which is almost the 

same gaussian solution that has been obtained previously.  The 

eigenfunction consists of isolated pulses in time, repeating 

periodically. On the other hand when the modulation decreases, 

the walls of the periodic wells decrease and for a given strength 

of modulatioa, solutions are found with overlap between the wave 

functions within each of the periodic wells.  The mode locking 

is not strong enough to suppress the amplitude between pulses. 
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V. General Position of Mode Locking Element 

When the mode locking element is moved a distance z  away 

from one mirror, where w z
0/

c is comparable to one or larger, 

one may not assume that the modes of interest have roughly the 

same field patterns thoughout the mode locking element. 

If the time varying conductivity of the mode locking element 

is oM(r, t) ,  the injected current I-.  is proportional to 

I f aM(r,  t)   ek* el dv vi e 
jÄü)Mt 

k-th Fourier component 

and    m(t)     of   (1.7)   has to be replaced by an expression proportional 

to 

in^U)   cc /    oM(?,  t)   5A   •  ek* dv 

which depends on k and I.    Now 

(k Au + Li  ) 
e. « sin  2_ z 

and using a corresponding expression for e.t     one finds that 

ek* * e£ contains some rapidly spatially varying terms, which 

integrate out to zero and a more slowly varying term 

1 

2 
exp j(k - Jl) ^1 2 + exp - j{k - £) ^ z 

C e 

       .... —.—^^^^. "^'—  , .._._... 
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Spatial integration over the "short" mode locking element replaces 

z by z . where z  is the position of the element measured o o 

from one mirror.  The injection current J-c^t)  in the  time domain, 

as defined by (1.8), becomes 

V^ = I ^k 
jkUMt    , IV 9 \ ^^M*1 

e  
M = i  S  M(k  J'> e  M 

2 kfi 
exp j(k - A) Aw 

+ exp >«-*>T'°H v(t) 

The time dependent injection signals are produced by the delayed 

and advanced versions of the mode locking modulation, a very 

obvious result. What is remarkable, however, is that we may now 

(effect a simple generalization of the results of the preceding 

section to obtain the mode locking solutions for this problem. 

Suppose we have a square wave modulation as shown in Figure 8.  If 

A  Zo the time delay (advance)  _ _ is one quarter of the period 
^M C 

of uM (center of the cavity, Aw -  wM)  the number of potential 

wells has doubled as shown in Figure 8 but their depth has de- 

creased.  The number of mode locked pulses doubles provided the 

depth of the wells is still sufficient to allow "trapped" solutions. 

If the modulation is of a more general shape, displacement of the 

element causes variations in the shape of the effective potential 

well, leading to distortions in the wave function (pulse shape). 

The present approach can be used to ascertain pulse shapes in a 

MHMB ■ - ■   I MMMMMMnaaM "flI-"—'  ; :.t>«m<. d 
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standing wave cavity with the mode locking element not near one 

of the mirrors. 

,_!_, ümüataiMMiMHiaH ^^mttmttmttlmm^ 
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VI,  Stability of Solutions of Homogeneously Broadened Laser Medi um 

In this section we study the stability of the supermodes 

with respect to arbitrary perturbations. We shall follow the 

analysis of stability of injection locking of Kurokawa[4].  in 

this analysis, the assumed steady state is perturbed, the per- 

turbation is taken to be a slow function of time (compared with 

the time variation of the unperturbed oscillation). 

An instantaneous frequency and growth or decay rate is ob- 

tained for the perturbation and the transient time evolution of 

the perturbation is studied for net growth or decay.  If it can 

be shown that there is no net growth the injection locking is 

stable, otherwise it is unstable. 

We shall extend this analysis to the study of the stability 

of "steady state" mode locking solutions.  Here all oscillations 

are coupled to each other through the injection locking process. 

The stability study is concerned with the time evolution of 

these coupled perturbations. 

Study of transients implies the replacement of the frequencies 

t)k of the modes by wk + nk where «k is complex;  -Im(fJ.) > 0 

implies growth of excitation.  Further the "instantaneous" per- 

turbation frequency nk itself is a function of time.  Thus even 

temporary growth may be offset by eventual decay. 

The objective then is to obtain an equation for a complex 

perturbation 6Vk of the steady state Vk and the frequency 

nk of the perturbation which is, in general, a function of the 

iMMHM iltihiilVirrn ■-1 > - -        _. "^■MMMMWi 
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phase *.  between 6V  and Vk. The perturbation obeys the 

same difference equation (1.16) as Vk, except that nk must 

be replaced everywhere by a)k + fik and g may be perturbed 

because an amplitude perturbation changes P and thus changes 

g.  All u.  dependent parameters may be expanded to first order 

in the ß. 's if the Si's    are assumed small (small growth 

rates and frequency deviations). 

We shall disregard all derivatives of the parameters of (1.4) 

with respect to Q,,    except that of Im Yck(wk). This is tan- 

tamount to disregarding all energy storages other than the elec- 

tromagnetic energy storage of the cavity modes.  If the oscillation 

of the perturbation 6Vk of the k-th axial mode occurs with 

the frequency uk 
+ ^w  then the admittance to be associated with 

6Vk is 

20 Yck (wk + V = Yck(wk) + j nk -f 
"k 

or in the continuum limit 

y_(w + n) = Yr(ü)) + jn ^s- 
o 

2Q s(6.1) 

If we assume that the unperturbed solution is the n-th 

supermode, V (to) , excited at synchronism (i.e.  g + 6 = 0) 

expand the difference equation as indicated and go to the continuum 

limit, we obtain the equation: 

* 
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M u + g    1 - w4 

- 1 
h>T 

6V 

+   (6g)   fl - Jfil . j (6.2) 

Next, consider the perturbation V 6g. 

Vn6g Vn9o 6 

1 + 2- 

V g n^o 

1 + X
U 

(6.3) 

If the voltage Vn(a))  is so nomalized that /|v (OJ) j2 dw is 

equal to the power, then 

«P = /|Vn(U) + 6V(to)|2 dw - /|Vn(U)|
2 do, = 2 / Vn(aJ) Re 6V dec   (6.4) 

and thus we obtain  for  (6.2) 

M u M 
dü)a 

+ g -1.. an: 
(Ü, 

6V - 2fl  - -Si 
(o 2 

•  jiL^    Vng      ^ v
n^

Re <5Vdu 

"L/i + -L ^ 
p. 

^ jßöV 
w. (6.5) 

IM^^^MIMHMHHaw 
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It is convenient to test first the stability of a general 

n-th supermode with respect to a perturbation 6V(a))  proportional 

to the m-th supermode,  6V{aj) = am um(w) ,  and study the fre- 

quency n(oj)  of the perturbation; here u (w)  is a properly 

normalized eigenfunction of the defining equation of the supermodes 

„V-J-, 0) 

w L J 
m     mm (6.6) 

and the eigenvalues E^ are given by (2.8). Since the eigen- 

functions are orthogonal, we may set 

/ u udw = 6 
.„ n n»     nm (6.7) 

Introducing ÖV = am uin(ü))  in (6.5) and using the orthogonality 

condition, we obtain for the frequency deviation: 

n » j -S CE - En) 
2Q  m   n (6.8) 

For ^ < En»  i.e. for m < n, one obtains Imfl < 0 and one 

finds growth of the perturbation.  Thus any n-th supermode is 

unstable with respect to a perturbation having a dependence upon 

cavity mode number  (w)  corresponding to a lower order supermode. 

Hence all modes n > 0 are unstable. 

The only possible stable mode is the 0-th order (gaussian) 

mode.  In order to prove its stability we must show that a general 

MHMMMMMMM ,J-''-"-'   ■■'■ "■■-   ■■ -^■■■■■-   ; 
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perturbation öV = Z a u (u)  does not lead to exponential 
in 

growth. We find from (6.5)r using V (w) = /P~ u (w) 
o o 

- Z (Em - EJ a„u„(co) *-±-    2Rean f 1 - Jüi - j Jl) u (w) 
m m   o  mm 

1 + ÜJ- w. 

2 -^ j« S am ulu) 
•i     — m ii uÄ    m 

(6.9) 

Through multiplication by uin(a)) , m = 0f 1,..., and subsequent 

integration one obtains a set of coupled equations for the coef- 

ficients am.  For m = 0 we obtain 

« o — c 
o p  oo 

a^ (1 + e 
-2j* 

0 f i + -^ 
P_ 
> 

')   = j" a. (6.10) 

where 

c_ = 7 uj(W) fi - -ai) dW « i - i üzl 
WL2 / 2 "L2 

oo  ' _o 
^00 

(6.11) 

and *o is the phase angle of aor i.e. the phase difference 

between the 0-th order component of the initial perturbation 

ao Uo(w)  and the steady state.  Note that C  > 0 even though 

Mtlltt*im*ltttum -"■"■■-■'-•.In  m ii' m-'i   -■ ifii-i---- ~^Jiitii^U«»*^«kiaja»aeM.j^.-............ ,  —■ - - 
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(6,11) seems to imply the possibility of negative values. We 

recall, however, that we have expanded a Lorentzian, an approxi- 

mation valid only when the pulse bandwidth u-  is small compared 

with wT.  If the expansion had not been made, (6.11) would be 

positive definite. 

Equation (6.10) is interpreted by a stability circle similar 

to the one discussed by Kurokawa when treating stability of 

injection locking of a single oscillator. Figure 9.  For an arbi- 

trary initial phase * , the frequency deviation and rate of 

decay are as shown in the figure. For no initial phase is growth 

observed. Suppose the initial phase of the perturbation *0 > 0 

as shown in Figure 9. Then Re n > 0 and the frequencies of 

the perturbations are greater than the frequencies of the steady 

state oscillation.  ♦ grows at the same rate for all modes and 

hence the circle is described with increasing time as shown.  * 

varies as the circle is traversed. The amplitude of öV(UJ)  decays 

at the rate Im ß which is always positive. The perturbation 

has relaxed when the origin is reached.  If the initial phase 

♦ = TT/2,  Im(f2) = 0  and no growth or decay occurs, i.e. there 

is no restoring force for a perturbation of this kind. A quadra- 

ture perturbation corresponds to a phase perturbation of the 

carrier frequency. Hence, the mode locked pulses have no carrier 

phase stabilization, just like a free running van der Pol oscil- 

lator [11] . 

Next consider the equations obtained for the perturbation 

amplitudes a,  and a2. The equations for m > 2  are all given 

by (6.8) with n = 0 because the integral 

MMuu^MMMaia   ■    ■ ^-;';" - ■ ■         - ^■- - ■■-■■■■ 
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c
mo 

£ '  um^) ^(")  1 --^r- J -^ do, m 
u« w. 

vanishes for all m ^ 0, 1,  2.  Hence decay is predicted for all 

perturbations with m > 2. We have for ra = 1 and 2: 

w. 

2Q      ta        o  m 

P 
g — 

PL 

1 +*. 
Cn  Re aÄ mo    o = j« a m (6.12) 

where 

'10 - j / uo u1 JÜ- du 

and 

'20 

This equation shows that Re a  acts as a source of these per- 

turbations.  In fact, a proper interpretation of (6,12) is obtained 

only after one recalls that jn is equivalent to a time derivative 

in the spirit of the present analysis (and Kurokawa's stability 

analysis) which deals with the time evolution of an instantaneous 

amplitude and frequency. 

Since the natural "frequencies" of the system of (6.12) are 

decaying exponentials, (6.12) predicts solely that the lowest 

order perturbation m = 0 produces m = 1 and m = 2 pertur- 

-■ ■ • ■ ■ - ■ '■-       
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bations while it decays according to  (6.10).     These excitations 

of    m = 1    and    m = 2    in turn vanish along with the decay of 

the    m = 0    perturbation. 
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VII. Conclusions 

The analysis of forced mode locking as a problem of injection 

locking led naturally to approximations which would have been less 

evident in a different approach.  In particular, the expansion of 

the laser medium susceptance in terms of frequency deviation intro- 

duced, in the time domain, first and second derivatives as a 

description of pulse distortion by the laser medium.  This ap- 

proximation reduced every forced mode locking analysis to a 

Schroedinger equation. Detuning of the mode locking drive intro- 

duces first derivatives which can be removed by writing the func- 

tion v(t)  as a product of an exponential multiplying factor and 

another time function.  The displacement of the mode locking crys- 

tal is represented simply as a shaping and a repetition of the 

"potential well".  The inhomogeneously broadened mode locked laser 

could be treated by this new approach.  The stability analysis of 

the mode locked solution reduced to a problem in essence treated 

by Kurokawa. 

It is believed that the potential of the present analysis 

has been hardly tapped and that many other issues of interest, 

both in forced mode locking and saturable absorber mode locking, 

will be analyzable using this new approach. 

-"—"—■■ ' ^ ■' -  
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Figure Captions 

1. Equivalent circuit for single mode, injection locked 

oscillator. 

2. The balancing of admittance discrepancy by injected currents 

produced by mode locking modulation. 

3. The force-field-potential as a function of "time". 

4. The normalized amplitude versus normalized frequency of 

the lowest order supermode for an inhomogeneously 

broadened laser. 

5. Pange of normalized gain and normalized mode locking 

modulation within which steady state mode locking solutions 

with single peak are found. 

6. Amplitude at line center as function of normalized modulation, 

7. "Deep" modulation and the quantum mechanical wave function 

analog. 

8. The equivalent "well" for mode locking element in cav:ty 

center and square wave modulation. 

9. The stability circle. 
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Appendix I 

In this Appendix we derive the circuit equations used in 

the body of the paper for the mode locking analysis. We assume 

an open cavity formed by curved mirrors in free space, portions 

of which are filled by the laser medium and the mode locking 

element.  The electromagnetic field in the cavity obeys Maxwell's 

equations 

V x E = - M 3H 

3t 
(1.1) 

V x H = e. 3E 

at 
+ J (1.2) 

In these equations J represents the perturbation of the cavity 

modes by thelosses, ti.3 laser medium, and the mode locking element, 

We expand the electromagnetic field in terms of the cavity modes 

with normalized field patterns e. (r)  and h. (r)  for the elec- 

tric and magnetic field respectively.  These mode patterns are 

related by 

V x ek = ßk h(r) (1.3) 

V x hk = ßk h(r) (1.4) 

where  ß.  is related to the resonant frequency u.   of the cavity, 
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u> 
3, 

ko 
(1.5) 

These field patterns are divergence free, 

ek = 0 (1.6) 

hk = o (1.7) 

In general, an expansion in modes having divergence is also 

necessary[12],  Nowever, the effect of these modes is negligible 

in optical cavities. V7e shall omit contributions due to such modes, 

The field patterns are orthogonal and may be normalized. 

/ e, dv = / h. • h * dv = N 6 kl (1.8) 

Here N is a normalization constant whose choice is dictated by 

convenience.  To be specific, one may consider a Gaussian mode 

whose field pattern is proportional to 

ek(r) « 2  /N 

/TTL w(z) 
sin ß , z 

-r V ws 

(1.9) 

where L is the spacing between the mirrors and w is the benm 

diameter which is the well known function of position z  and 

radii of curvature of the mirrors(13].  One may assume that at 

the mirrors the boundary condition is met that the tangential 

electric field vanishes.  The field is approximately transverse 

- - ■ -■    -■ -       n—t,.,, -..^ 
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to the direction of propagation, the polarization vector lies 

in the surface of constant phase. 

Use of the mode patterns effects a separation of the time 

dependence from the spatial dependence.  One may write 

- -  3W0t E(rf t)   = I  vk(t) ek(r) e " + C.C. 
Jv 

(I.10) 

- -  3w t 
H(r, t) = F iv(t) h. (r) e 0 + C.C. (1.11) 

where we display only the positive frequency parts and extricate 

explicitly the fast time dependence exp jw t corresponding to 

the centev frequency of the laser line.  We indicate all fre- 

quency coinponents from v/hich the fast time dependence has been 

extracted by a bar under the letter. When these expansions are 

introduced into Maxwell's equations and the ortogonality condi- 

tions (1.8) are utililized, onü obtains differential equations 

in time for the amplitudes  ijJt)  and ZK^'  the e<3uiva:i-ent 

currents and voltages. 

^«-Lk   (jo^-)^ (1.12) 

ikB ck hu
0 

+ — Xic+ -i- ^ 1 • gk*dv 
k    1        O dt  j -* 0^N K 

(1.13) 

The equivalent capacitance and inductances of (1.12) and (1.13) 
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are given by 

L =^=-L- /^ (1.14) 
ßk  uko N eo 

The resonance frequencies of an optical cavity are evenly spaced, 

so that 

(ü.=ü)+ kAw (1.15) 

where w  is the frequency of the mode nearest laser-line center 

and the mode index k assumes positive and negative values. 

If mode locking is achieved, the frequencies w^ of the 

Fourier components of the field will be evenly spaced with the 

frequency separation u.., where ü)M is the frequency of modula- 

tion of the mode locking element.  Because of the resonant nature 

of (1.12) and (1.13), the time dependence of the k-th  cavity 

mode will be essentially exp j w^t where u^ is the frequency 

of the spectral component nearest the res'.onance frequency wko 

of the cavity.  This implies, on one hand, that wM must be near 

Aw and that 

u^ = k üJM + u)0 (1.16) 
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where a)o is the frequency of oscillation of the mode nearest 

to laser line center.  In fact, the OJ^S in (1.15) and (1.16) 

need not be identical; but in the case of cavity modes spaced 

closely compared to the laser line-width one will always find 

a mode near line center that oscillates essentially at its reso- 

nance frequency.  The equation of the amplitude of the k-th 

cavity mode, whose amplitude has the time dependence exp j w.t 

as explained above is: 

j B (u ) V. + -L- / J . i * dv = 0 (1.17) 
k 

where the "susceptance" of the k-th mode is 

W = (wo + V Ck " : 7=  ,T  = 2 .2. k(WM - ÄW) G 
(wo + wk)Lk    uo - 

where    Q = J^Üi = _2_ 
GC    GC 

(1.18) 

with Gc  to be defined later, and cJko and Ck are approximated 

as independent of mode number k.  Here we have denoted the Fourier 

component of the last term in (1.17) at frequency w.  by a ver- 

tical bar followed by the subscript k.  This is the driving term 

for the k-th cavity mode which contains in addition to the in- 

jected signal due to the mode locking modulation a contribution 

of the cavity loss and the laser medium gain.  We assume that the 

■■^*'^—™-——— -- ■ -    ■  -     — ■■ ■ 
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positive frequency part of J, with e 

be written in the form 

^t 
omitted, J, may 

lir,  t)   = loc(r) + jWoe0 xL(r) + a^r,  t) 1 E{r,  t) .  (1.19) 

The first term is an equivalent conductivity representing the 

cavity losses.  The second term includes the complex polarizability 

X  of the laser medium.  The last term is the modulated conduc- 
L 

tivity produced by the mode locking element, under the assumption 

of resistive modulation.  A modulation of a dielectric constant 

can be treated by replacement of the conductivity by an imaginary 

quantity.  In (1.19) it has been assumed that the cavity loss and 

the laser medium susceptibility are time independent and hence 

produce no modulation sidebands of the electric field. The instan- 

taneous variation in laser gain as produced by a passage of a mode 

locked pulse have been disregarded.  This means that the assumption 

has been made that the laser medium relaxation time T1 is very 

long and hence the laser medium responds only to the time indepen- 

dent power of the mode locked pulse train.  The k-th Fourier 

component of the driving term of the k-th mode in (1.16) assumes 

then the following form 

ßkN 
/ J • ek(r) dv IGC + Y^ + Gc Z mki{t)  -(t) 

k-th Pourie: 
component 

(1.20) 
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Gr =   / or{r) e. • e*  dv 
^  ß N   ^    K   " 

(1.21) 

Y
T. ^ — J" XL(r) ek • ek*  dv 

ßoN 
(1.22) 

G,, m,, (t) = -^- / ^.(r, t) e. * • e. dv 
ß N   n      K    * 
o 

'C ,uk (1.23) 

If the modelocking element is near one of the mirrors, the 

integral becomes k- and I-    independent and one may then omit 

the subscripts k, I.     This has been done in the first part of the 

text.  If the laser medium and the equivalent loss are nonuniformly 

distributed through the cavity, then coupling is produced between 

the different mode patterns.  This coupling leads to injection 

signals caused by the k-th Fourier component into modes of index 

A / k.  Such injection signals excite the mode off resonance and 

therefore produce a negligible effect and will be disregarded. 

The conductance assigned to the mode locking element, on the other 

hand, because of its time variation, produces Fourier components 

at frequencies other than the frequency of the driving electric 

field, and hence coupling between the modes due to this conductivity 

aM must be included.  Introducing (1.18) through (1.23) into (1.17) 

we finally obtain the desired relationship 

~ -   -■---. ^_^,^^^J^M,_J_^_  '"'' ""^'liiWiiflB 
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[■ 
ka)M w    - Aw 

es,. I 1  +  j  _J! 2Q -2    | + YL(a)k) 
JM  -  Aü)  1 

V, 

-    Gc m{t)   l VÄ  e 
jiuj: M 

k-th Fourier component (1.24) 

This is (1.10) of the text. 

Next we study the effect of gain saturation and the approxi- 

mations necessary to lead to manageable equations.  The rate 

equation for the population inversion for a driving field near 

the resonance frequency of the medium is 

111= - " " "e 
at    T. 

- 2 T2n (1.25) 

Here p  is the matrix element of the laser levels.  We assume 

that all Fourier components of the electric field lie sufficiently 

near the resonance of the laser medium so that all Fourier com- 

ponents in E may be assumed to have an identical depleting effect 

on the population inversion.  If one assumes that the relaxation 

time T^    of  the laser medium is long enough so that the laser 

medium cannot respond to the time dependent components of the mode 

locked laser pulses, one may write for the population inversion 

approximately 

■UHMMMWiiaMMIIIkaU   aMMMHMMH^Mk. 
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1 - 2<  I >T  T 
* 1  2 (1.26) 

where <> indicates a time average. The time independent com- 

ponent of the square of the electric field may be written 

<|E|2> = I   |VJ2 ik • i. *. (1.27) 

We are interested in the term, (compare (1.22)): 

/ XL ek  *  ek* dv « / dv ek  •  ij 1  - 2T1T2 

\ h • V ivÄi2 (1.28) 

A simple evaluation is possible if the laser medium is short and 

positioned near one of the mirrors of the optical cavity. Using 

the mode pattern (1.9), one has for the second term in brackets 

of (1.27) 

/ dv (ek • ek*)(e^ i ., = JSL. % 
*    2TrLw2 L 

(1.29) 

HMHBaaMKMMaMaa ■• - 
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where we have made the assumption that the propagation constant 

ß is identical for all modes of interest an assumption valid if 

the integration is to be carried over a volume short compared to 

the optical cavity length and situated near one end of the cavity; 

eL is the length of the laser medium. With this finding one may 

write for the integral (1.27): 

/ X L ek .* dv = / x? e. • e, dv 1 - 
* |VJ2 

Pr 
(1.30) 

where the saturation power P-  is defined by 

3 N 

PL  ir L w2 
T1T2 (1.31) 

When the medium fills the entire cavity, the integral in (1.28) 

is somewhat more complicated and in fact what is included by 

carrying out the integral is the effect of spatial hole burning, 

an effect not to be considered in the present study. 

One may generalize (1.30) to be valid approximately also 

for large field intensities by replacing the factor 1 - E V 2/P 
n  ij 

by 1/n + j: Vn
2/Pb) . This is the form used in the bulk of the 

paper. 

It is convenient to normalize the "voltage" components so 

that their mean square amplitude gives the power in one of the 

MUMMMMMMMIMM 
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two counter travelling waves in the standing wave cavity. With 

the mode pattern (1.9) the peak amplitude of the electric field 

of a travelling wave component is 

E    - i^E 1 e-rVw
2 

Peak  /IrE w 
(1.32) 

If one implies that the integral of the power density of the 

wave over the cross-section of the optical beam be equal to the 

voltage amplitude squared, one obtains the relation for the 

normalization constant N 

N IT L (1.33) 

This is the normalization employed in the bulk of the paper. 
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MODE   LOCKING  WITH  A  FAST  SATURABLE   ABSORBER* 

H.  A.  Haus** 

Abstract 

A closed from solution is obtained for node locking of a 

laser by a saturable absorber with instantaneous response.  The 

laser ncdium gain is assumed time independent. The solution, 

as a function of time, is a hyperbolic secant. 

*  Ä-^oo^r."55 '^ ReSearCh 0ffiCe - DUrham (Cont-ct 

** 
P^^^iCal EngineerincT Department & Research Laboratory of 
Mass  ^2139.    ChUSettS InStitute of Technology, CaSridge, 

«A 
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I,  Introduction 

In another publication, we have developed a theory of forced 

mode locking in the frequency domain (see appendix IV). With 

some modifications of this mode locking theory, it is possible to 

obtain what we believe is the first closed-form solution for 

saturable absorber mode locking. 

As in the case of forced mode locking, we treat mode locking 

by a saturable absorber as a form of injection locking.  This 

means that the admittance mismatch of the resonant circuit repre- 

senting a cavity mode is balanced by the injection locking current 

produced through interaction of the equivalent cavity voltage (i.e. 

electric field amplitude) with the saturable absorber. 

In equation form: 

(Yck(u,k) + Vwkn Vk= W (1-1) 

Here Y .  is the equivalent admittance of the k-th axial cavity 

mode and Y  is the equivalent admittance of the laser medium. 
L 

The reader is referred to appendix IV for details of the derivation 

The following approximations are made: 

(a)  The mode susceptance is expressed as a linear function of 

frequency deviation from the mode resonance frequency üJko and 

the equivalent conductance is assumed mode independent 
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Yc((.k)    =   Gc 
! + 2j  Q_ (uJk . t0ko) 

w. 
(1.2) 

(b)  The laser nedium equivalent admittance has a Lorentzian shape 

that is approximated by an expansion in frequency 

W - - GC g i - j 
Mi W< (Wi w. J2 

üJT (JI)T 

(1.3) 

Here,  g  is power dependent, where  P  is equal to the sum of the 

counter traveling powers of the standing waves of each axial mode. 

g = 
1 ■»• — 

(1.4) 

The saturation expression is approximately independent of frequency 

if the frequency spectrum of the pulse is narrow compared with the 

linewidth. 

(c) All Fourier components of the amplitude of the  k-th  axial 

mode other than the one near the cavity resonance are neglected 

(high  Q  approximation). 

(d) One assumes that mode locking is successful, i.e. that a solu- 

tion of periodic pulses does exist, so that all Fourier components 

are evenly spaced at separations u .  The frequency of the  k-th 

axial mode amplitude is 

"k = k WM ^ "o (1.5) 
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where u)o is the frequency of the mode nearest medium line center 

(set approximately at line center, an assumption legitimate if 

the mode spectrum is dense). 

(e)  The injection current Isk in (1.1) is assumed to be produced 

by modulation products of the equivalent mode voltages (electric 

fields).  The loss element is assumed to interact equally with all 

modes (i.e. the element is thin and near one of the laser cavity 

mirrors). 

LSk G_ m(t) E V. e j *•»)!* 
(1.6) 

The separation of the resonance frequencies u.   of the axial 

modes is constant,  Aw,  and thus 

"ko " ^ Äcj + w . (1.7) 

(1.5) and (1.7) imply that the central mode, k = 0, oscillates 

at resonance, an assumption justified by the fact that we obtain 

a solution. 

Introducing (1.2), (1.3), (1.5), (1.6), and (1.7) into (1.1) 

we obtain 

1 + jkwM f 20 _M  . - g 
w. u M w. 

1 - 
(k WM)l 

WT 

in(t) I V, e 
J£«Mt 

k-th Fourier component 

(1.8) 

^^_-JaaM_Haaaa^_ 
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The right hand side of (1.8) is more conveniently expressed in the 

time domain, as  - m(t) v(t)  where 

jtajMt 
v(t) = i v e  n (1.9) 

1  ' 

is the time dependent amplitu«4"! of the standing wave electric field 

near the mirror (next to which the s:iturabl:» absorber is situated) . 

One may look, therefore, for simplification of (1.8) by expressing 

the entire equation in the time domain.  Multiplying the left hand 

side by exp j k w.,t,  adding over all k  and noting that multi- 

plication by  (j k uOn is d /dtn  in the time domain, one has 

1 "L dt     \   WL2 dt2 / 

v(t) = - m(t) v(t)   (1.10) 

where 

« = 2Q -= h (1.11) 
W0   "M 

The equation describes the change wrought on a pulse of the 

electric field by the action of the cavity and the laser medium 

and sets this change equal to the change caused on the pulse by 

the time dependent element as expressed by m(t).  The term 

1 x v(t)  is proportional to the distorcicn-free decrease of the 

pulse caused by the cavity loss.  The laser gain produces a change 

proportional to 

«■iHMHI 



wwpnpu^wBnwp"^""1" I»'*" »   « iniiiB.pjip^^i i^m^*mmmmmmv "*  .\nm^^^^^^mwf^mr^^mm^t ^ mi.'m imvi  i ti\r*^vmm*^r^mmmm*m**mm- 

-/ 

"1 + ^f|v- 
If v is a single pulse with two inflection points, the second 

derivative is a pulse with three extreme.  Remember 

that d2/dt2  is the Fourier transform operator of -u2.  Hence 

this contribution expresses the deficiency of gain at larger fre- 

quency deviations from line center as compared to the gain at the 

center frequency.  The pulse with the three extrema subtracts at 

the center of the original pulse  (t -»■ 0, UJ ->■ »)  and adds on the 

wings  (|t| -»■ <»,  u ■♦ 0) . The pulse passing through the medium 

is amplified and broadened (in time). 

On the right hand side appears the (negative) change produced 

by the time varying element, in our case the saturable absorber. 

This element has to compensate for the shape change proluced by 

the laser medium. 

For the purpose of relating to the derivation in the next 

section, note that   m{t)  as produced by a saturable absorber 

may be written as Q/QA(t)  where Q  is the cavity quality factor 

in the absence of the absorber and  l/Q.ft)  is the time dependent 

inverse Q of the saturable absorber. 
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II.  The Saturable Absorber 

The rate equation for the population differenrf; n between 

the lower and the upper levels of the saturable absorber is 

3n K  " ^e n    v(t) 
2 

*-  2 oA J L_ n. 2 #1) 
3t      T.       " fiw A A "o 

v{t)  is so normalized that  |v(t)|2  gives the sum of the powers 

in the two counter traveling waves in the cavity added over all 

axial modes.  Here TA is the relaxation time of the absorbing 

medium,  n  is the equilibrium population difference,  a  is e A 
the optical cross-se-tion of the absorbing particles and A is 

the cross-section of the laser mode.  If tne thickness of the 

absorbing medium is  8A and the length of the cavity is L,  one 

may def-.ne a Q associated with the absorbing medium. 

- "-  'A 

or   2 o. nc 6, o     A    A __ =  .  {22) 

QA      L 

where uQ,     the resonance frequency of a cavity node, is set equal 

to the laser line center frequency.  This Q is a function of 

intensity and is obtaineJ from (2.1) and (2.2) as a solution of 

the differential equation.  If the relaxation time T  of the ab- 
A 

sorber is fast compared w:th the rate of change of the intensity. 

■Min i ■ 
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we may assume that the population difference is an instantaneous 

function of intensity, and obtain an approximate expression for 

the instantaneous Q of the saturable absorber 

.!_ C eA 2qA ne 1 - v(t) 
o 

1 - |v(t)| 

p. 
(2.3) 

where we have defined the saturation power for the absorber by 

* tt)oA 

2 ÖATA 

(2.4) 

The time-independent part of the Q of the absorber may be in- 

corporated in the cavity loss. Thus, for the fast absorber, we 

obtain  the differential equation 

l+   (g+6)    J-J.+   gfl   +   _L_-di 
UL  dt \ UL2   dt2 

v = 2 bLJt) (2.5) 

We shall now look, for solutions of this equation corresponding 

to mode locked pulses.  Remember that the frequency u  is an 

adjustable parameter,  to be determined from the character of the 

problem.  It will become clear that no periodic solutions exist 

when g + 5 ^ 0  and thus we may state at the outset that the pulses 

must pick their repetition period so that g + 6 = 0.  The remaining 

equatior; 
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t 1- g(l + ^_^i "L 
2 dt: 

v - Q Ivl v = 0 (2.6) 

can be recognized as the equation of motion of a particle of 

displacement v(t)  in a potential well 

1 (1 - g) v2 + * -0- Xl 
2 

*  0.° PA 
(2.7) 

If the particle is launched at the well height 0,  at 

0- 
V = 2 —V1 - 9J (2.8) 

with zero velocity it moves tc ri.e origin and stops there.  This 

solution is symmetric in time. A oulse like solution for the notion 

cf the particle is then 

v(t) = 

cosh — 
T. 

t^ 

rp 

(2.9) 

where 

_Q_V 2g 

and 

(2.10) 

1 - g = (2.11) 

*^ I I .... ~^. —,._  
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as can be ascertained by substitution of (2.9) in (2.6). 

This solution is an isolated pulse.  A succession of periodic 

pulses, of any desired period 2^/(^(1 - g) < TR < « is obtained 

by launching the particle at a lower height.  If Tp « T = ?n/a, 

then the single pulse is an excellent approximation to one period 

of the periodic pulse train.  Well mode locked pulses with good 

time separation are of this character.  Since 

dt 

cosh2 / — 
■ 2TP' 

the energy in the pulse is given by 2Tpvo2.  The power P of 

whe laser is then P = 2Tp V0«/TR.  Introducing this expression 

into (2.10), one obtains an equation between P  and T 
P 

i = _SL 
"L 

(2.12) 

where we have defined the coefficient 

(2.13) 

(2.11) and (2 12) supplemented by the dependence of the negative 

conductance g upon power P,  (1.4) 

1 + 

- M«^ .... 



t"^1 '  ' ip^^^W^WW^WWBW^WPiiliimi... .11 .U^^PP^^Ü^i li I i i i    .  i   ii «^ 

-/ 10 

yield three equations for the three unknowns  P,  g,  and the 

pulse width Tp. 

From (2.11), we note that  g  is less than unity.  This means 

that the laser is below threshold with respect to the linear loss 

(loss ;.n absence of laser power) .  The laser oscillates because 

the bleaching of the absorber reduces the loss below the linear 

loss.  The equivalent injection locking voltages have to be equal 

to the difference between the voltages produced by the positive 

and negative impedances.  Because this combination of impedances 

is below threshold over the entire mode spectrum the injection 

voltages are all of the same sign.  This finding has to be con- 

trasted with forced mode locking, where the center portion of the 

spectrum is above threshold, the wings arc below threshold and 

the equivalent injection locking voltages change sign as one pro- 

gresses from the center of the line to its edge. 

(2,11) may be used to eliminate g,  and from the remaining 

two equations (2.12) and (1.4) one may obtain two equations for 

P/P  and w. Tp  respectively. 

go PL  a)L Tp + 

^L TP 

Solutions of 1/U)TTD  vs  g <  are shown in Figure 1.  It is clear 

from the figure that under certain conditions no mode locking so- 

lutions are found.  Indeed, that happens for a fixed excess gain 

 ~  
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parameter 1 - 1/g  when g < becomes too large, i.e. the Q of 

the absorber becomes too small or its saturation power P  becomes 

too small.  The saturable absorber is too "overpowering", the pulse 

wants to become too high and too short, and the laser medium cannot 

adjust itself to it. 

An asymptotic expression for  l/u. Tn  as a function of g »c 

is easily obtained and helps in the interpretation of Figure 2. 

If one assumes that g < << 1,  i.e. if one views the portion of 

the plots closest to the ordinate, and looks for solutions  l/(jTt_, 

<< 1,  one r^ay simplify (2.14) to become 

(2.15) 

Thus the lower branches of the curves in Figure 1 are straight 

lines with slopes proportional to 11 - — 

Since we have found in general two solutions for each set of 

parameters corresponding to different pulse widths and intensities 

one would expect that in general some of these solutions would be 

unstable.  This question will be investigated in another publica- 

tion.  Suffice it to state here that the branch above the "locus 

of apices" in Figure 1 is found to correspond to unstable solu- 

tions, except in the very neighborhood of the locus.  There two 

stable solutions are found within a very narrow regime of <g , 

for any given  g . 
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Conclusions: 

The problem of a fast saturable absorber has been solved in 

closed form.  The pulse shape is a secant hyperbolic as a function 

of time.  Incidentally, the spectrum has also a secant hyperbolic 

shape because the secant hyperbolic is its own Fourier transform. 

The net gain of the system  (g - 1)  is negative before and 

after the pulse.  This is a necessary reguirement for the stability 

of the solution found.  Indeed, if the gain had been found positive 

in the dead-time between the pulses, any disturbance could grow in 

this time interval and thus destroy the sequence of periodic short 

pulses.  Experimentally observed  two photon fluorescence traces 

produced by picosecond pulses have been compared against assumed 

gaussian and Lorentzian pulse shapes [1].  The present analysis 

suggests that the assumption of a hyperbolic secant shape is more 

plausible. 

—  -  - -  -  ■-     . — 
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